Hydrology, Infrastructures & Geotechnics

Experimental methods for investigating the effects of soil settlements and vibrations in cultural heritage buildings, induced by underground structures

universidade

de aveiro

ւն

ICIST ZNE<

Contents

Problem statement: Cultural heritage masonry buildings in the proximity of underground railway structures • induced soil settlements and vibrations

Thesis outline

- Induced settlements in soft ground
- Wave propagation from railway traffic
- Damage criteria, numerical and analytical models

- Experimental research on masonry
- Mechanical characterization tests
- Criteria from standards and codes
- Acquisitions of induced vibrations

Experimental work and analytical applications

- Experimental fatigue tests on masonry specimens in diagonal compression
- Fatigue testing protocols
- Analytical stressstrain applications

- Experimental vertical uplift tests in piers and spandrel masonry specimens
- Structural repair and retrofit applications
- Mechanical strength models

- Numerical reproduction of experimental results
- Numerical applications under the combined effect of settlements and induced vibrations

Contents

- Problem statement: Cultural heritage masonry buildings in the proximity of underground railway structures • induced soil settlements and vibrations
 - \checkmark Cyclic deterioration is often not incorporated in FE modelling
 - Multi-hazard structural response assessment in masonry structures has not been fully investigated
- <u>Objectives</u>: Reliable experimental data, for settlement-vibration induced damages on simulated historic masonry specimens
 Structural performance of engineered repair and retrofit

applications

Correlate testing results with analytical formulations

fatigue curves, strain-stiffness functions macro-element capacity models Non-destructive testing

Reference of 19th century brick masonry buildings

Experimental campaign

Cyclic-fatigue tests on rendered masonry wallets under diagonal compression

Overview

□ Fatigue direct shear strength parameters: • ultimate tensile strength • stiffness properties • static stresses • cyclic stress range • the cycling frequency • number cycles $N_f \simeq 10^5 - 10^{10}$

Experimental campaign: Fatigue tests on masonry wallets with rendering under diagonal compression

Testing objectives

- Fatigue under high static stresses Local stress close to peak capacity
- Fatigue at real-time conditions in a structure • constant fatigue loading conditions and a static service load increase • time period of 1.5 years

Data acquisitions

Shear strain - masonry surface - Temperature detrending

* Average chord stiffness from loading and unloading branch.

* Average chord stiffness from loading and unloading branch.

Analytical formulations

Reverse Gompertz curve least square fit • Holmen 1982 hypothesis of equal fatigue failure properties
G_{sec,Ni}

1.0

0.9 0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Secant shear stiffness Gsec, norm (Mpa)

	Wallet <u>DCfi</u> -j	Fatigue <u>Bj</u> Cycles	$G_{\tt sec,N=1}$	${\rm G}_{\rm sec,N_{\rm Bj}}$	λ	$N_{f,est} = \frac{1}{1 - \frac{G_{sec,N_{Bj}}}{G_{sec,N=1}}}$
	DCf3-1(0.54ft,±0.12ft)	1-1.5E+05	830.4	743.5	0.57	8.21E+05
	DCf3-2(0.59ft,±0.12ft)	1-1.5E+05	837.6	726.2		6.46E+05
	DCf3-3(0.64ft,±0.12ft)	7.02E+04	756.5	323.4		7.02E+04
D	DCf4-1(0.64ft,±0.04ft)	1-1.5E+05	691.1	740.3		-
	DCf4-2(0.69ft,±0.04ft)	1-1.5E+05	680.0	666.5	0.27	2.01E+06
	DCf4-3(0.73ft,±0.04ft)	1-1.5E+05	692.0	657.3		7.94E+05
	DCf4-4(0.79ft,±0.04ft)	1-1.5E+05	663.6	641.5		1.20E+06
	DCf4-5(0.84ft,±0.04ft)	1-1.5E+05	659.3	638.2		1.24E+06
	DCf4-6(0.89ft,±0.04ft)	6.25E+04	628.0	461.1		6.25E+04

Georgios Karanikoloudis / Experimental methods for investigating the effects of soil settlements and vibrations in cultural heritage buildings, induced by underground structures

 λN_{B_i}

Experimental campaign

Historic brick masonry facades

In-plane tests of differential vertical uplift in pier and spandrel specimens

11

Overview

In-plane capacity in piers and spandrel exhibits a variety of failure modes, under flexure, diagonal or sliding shear, rocking and compressive crushing, under a sequential progression

- Parameters that control the response: relative stiffness of structural subsystems • axial compressive stresses in the spandrel • vertical prestress in the piers • in-plane rotational restrain
- Resistance mechanisms in the spandrel: interlocking bricks shear bond strength in bed and collar joints • presence of lintels and in-plane strengthening elements

Georgios Karanikoloudis / Experimental methods for investigating the effects of soil settlements and vibrations in cultural heritage buildings, induced by underground structures

Overview

Resistance mechanisms in the spandrel: • interlocking bricks • shear bond strength in bed and collar joints • presence of lintels and in-plane strengthening elements

Performance of engineered structural repair and retrofit techniques

Masonry assemblies • setup, protocols and instrumentation

Four in-plane capacity tests in real scale piers and spandrel specimens

Testing assembly of piers and spandrel	Vertical prestressed rods	Lateral support at uplifting pier with rollers	Crack filling with grout	FRCM structural render, with in-plane adhesive anchors
UN1-US	\checkmark			
UN1-DS-GR	\checkmark	\checkmark	\checkmark	
UN2-US	\checkmark	\checkmark		
UN2-DS-GR-FRCM	\checkmark	\checkmark	\checkmark	\checkmark

US: Undamaged state, DS: Damaged state, GR: Grouting, FRCM: Fiber Reinforced Cementitious Matrix system

Masonry assemblies • setup, protocols and instrumentation

Four in-plane capacity tests in real scale piers and spandrel specimens

Data acquisition

Data acquisition

Data acquisition • structural repair and retrofit

UN1-DS-GR Grouting injections with lime-based M15 grout

UN2-DS-GR-FRCM +FRSM structural render and FRCM anchors

Data acquisition • structural repair and retrofit

Data acquisition • structural repair and retrofit

Conclusions

- Durability in historic masonry structures, has not been fully evaluated and many times not incorporated in the structural assessment framework
- Many material constitutive models do not account for cyclic softening due to fatigue, and thus, multi-hazard structural assessment under induced settlements-vibrations is particularly complex
- Probabilistic approach for fatigue: S-N_f, ε-N_f curves and correlations of shear strain-stiffness, under static and cyclic stress combinations
- Fatigue tensile damage model in ATENA FE software: fracturing strain increment ε_{fatigue} is added after N_i cycles, as a percentage of the failing fatigue strain

$$\frac{\sigma_{\text{max}}}{f_{\text{t}}} = 1 - \beta_{\text{fatigue}} (1 - R) \log N_{\text{f}}$$

Numerical analyses for replicating the experimental tests for settlements and vibrations, and their combined effect, are part of future works

Georgios Karanikoloudis / Experimental methods for investigating the effects of soil settlements and vibrations in cultural heritage buildings, induced by underground structures

Thank you

Acknowledgments

22

Partly supported by FCT (Portuguese Foundation for Science and Technology) within ISISE project UID/ECI/04029/2013